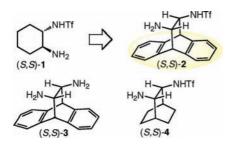


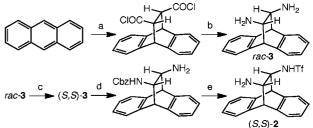
Published on Web 11/15/2010

Design of Structurally Rigid *trans*-Diamine-Based Tf-Amide Organocatalysts with a Dihydroanthracene Framework for Asymmetric Conjugate Additions of Heterosubstituted Aldehydes to Vinyl Sulfones


Shin A. Moteki, Senmiao Xu, Satoru Arimitsu, and Keiji Maruoka*

Laboratory of Synthetic Organic Chemistry and Special Laboratory of Organocatalytic Chemistry, Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Received September 2, 2010; E-mail: maruoka@kuchem.kyoto-u.ac.jp


Abstract: Asymmetric conjugate addition of α -heterosubstituted aldehydes such as α -amido and α -alkoxy aldehydes to vinyl sulfone was effected under the influence of structurally rigid *trans*-diamine-based Tf-amido organocatalyst (*S*,*S*)-**2** with a dihydroanthracene framework to furnish α , α -dialkyl(amido)aldehydes and α , α -dialkyl(alkoxy)aldehydes with high enantioselectivity. The chiral efficiency of the structurally unique catalyst (*S*,*S*)-**2** is apparent in comparison with (*S*,*S*)-**1** and (*S*,*S*)-**4** with similar functionality.

Asymmetric aminocatalysis has been recognized as one of the most fundamental, yet important reactions in the field of asymmetric organocatalysis.¹ In such asymmetric aminocatalysis, the use of chiral secondary amine catalysts including proline-derived ones has proven to be an extremely powerful approach.^{1b} In recent years, primary amine catalysis using primary amino acids and chiral trans-1,2-cyclohexanediamine-derived organocatalysts (e.g., 1) has emerged as a complementary tool for activating sterically demanding carbonyl substrates, because of its advantage over chiral secondary amine catalysis.^{2,3} In this context, we are interested in designing a structurally rigid, chiral trans-1,2-cyclohexanediamine-derived organocatalyst of type 2 with a 9,10-dihydroanthracene subunit in order to shield one side of the catalyst more efficiently than catalysts 1 and 4 which have similar functionality. The chiral, bifunctional organocatalyst 2 would be highly effective for remotely controlled transformations like asymmetric conjugate additions. Here we wish to report the asymmetric conjugate addition of α -heterosubstituted aldehydes such as α -amido and α-alkoxy aldehydes under the influence of structurally unique organocatalyst 2 to create asymmetric quaternary carbon centers. This asymmetric transformation has broad substrate generality and provides general access to the asymmetric synthesis of structurally diverse α, α dialkylamino aldehydes, since starting α -amido aldehydes are readily available from a wide variety of both natural and unnatural α -amino acids in addition to α -amino nitriles.⁴

The requisite catalyst (S,S)-**2** can be easily prepared by a Diels-Alder reaction of fumaryl chloride with anthracene and subsequent transformations as shown in Scheme 1.⁵

Scheme 1. Synthesis of Catalyst (S,S)-2^a

^{*a*} Reagents and conditions: (a) fumaryl chloride, toluene reflux; (b) (i) aq. NaN₃/toluene, 0 °C; (ii) toluene reflux, then conc. HCl; (iii) aq. NaOH (56% overall yield); (c) (i) (-)-mandelic acid, MeOH; (ii) aq. NaOH (36% yield, >99% ee); (d) (i) conc. HCl, (ii) Cbz-Cl, aq. NaOH, MeOH, 0 °C (83% yield); (e) Tf₂O, Et₃N, CH₂Cl₂, -78 °C; Pd/C, H₂, MeOH, room temp (93% yield).

Attempted asymmetric conjugate addition of *N*-Boc α -aminophenylacetaldehyde **5a**⁶ to 1,1-bis(benzenesulfonyl)-ethylene⁷ in toluene in the presence of catalyst (*S*,*S*)-**2** gave rise to conjugate adduct **6a** in 90% yield with 86% ee (entry 1 in Table 1). Use of HCl as

Table 1. Screening of Reaction Conditions for Asymmetri	С
Conjugate Addition of Heterosubstituted Aldehydes ^a	

сно І т		SO ₂ Ph catalyst (10 mol%)		CHO SO₂Ph]∗]		
		SO ₂ Ph	additive toluene	Ph BocHN		₂ Ph
5a			loiuerie		6a	
				time	%	%
entry	catalyst	additive		(h)	yield ^b	ee ^c
1	(S,S)-2	none		24	90	86
2 3	(S,S)-2	HC1		3	96	91
	(S,S)-3	HC1		24	98	71
4	(S,S)-3	HCl^d		24	84	60
5	(S,S)-4	HCl		2	72	1
6	(S,S)-1	HCl		24	58	0
7	(S,S)-2	CF ₃ CO ₂ H		3	99	89
8	(S,S)-2	TfOH		12	90	92
9	(S,S)-2	$PhCO_2H$		24	94	79
10	(S,S)-2	$4-(NO_2)C_6$	₅ H ₄ CO ₂ H	36	86	76
11	(S,S)-2	3-(NO ₂)C ₆	5H4CO2H	12	99	75
12	(S,S)-2	$2-(NO_2)C_6$		10	96	79
13	(S,S)-2	2,6-(NO ₂)	₂ C ₆ H ₃ CO ₂ H	0.5	98	93
14	(S,S)-2	2-(OH)C6	H ₄ CO ₂ H	20	96	75
15	(S,S)-2		C ₆ H ₃ CO ₂ H	0.5	99	93
16^e	(S,S)-2	2,6-(OH) ₂	C ₆ H ₃ CO ₂ H	12	98	95
17	(S,S)-2	2,6-(CH ₃)	2C ₆ H ₃ CO ₂ H	60	82	71

^{*a*} Unless otherwise specified, asymmetric conjugate addition of heterosubstituted aldehydes and 1,1-bis(benzenesulfonyl)ethylene in the presence of 10 mol % of catalyst (*S*,*S*)-1–4 and 10 mol % of additive in toluene at room temperature under the given conditions. ^{*b*} Isolated yield. ^{*c*} Enantiopurity of conjugate adducts was determined by HPLC analysis using a chiral column with hexane–isopropyl alcohol as solvent (see Supporting Information). ^{*d*} 20 mol % of additive. ^{*e*} At –20 °C.

an additive enhanced both reactivity and selectivity (entry 2). However, diamine hydrochloride, (S,S)-**3**•(HCl)₂ lowered the enantioselectivity (entries 3–4). Notably, amino Tf-amide catalysts of type (S,S)-**1** and (S,S)-**4** totally lost the enantioselection (entries 5–6). Additional optimizations with regard to additives led to the reaction conditions using 2,6-dinitro- and 2,6-dihydroxybenzoic acid as additives (entries 7–17), and by using these additives, conjugate adduct **6a** was obtained with a short reaction time with 93% ee (entries 13 and 15). Further, 95% ee was achieved by lowering the reaction temperature (entry 16).

With the optimized conditions in hand, we investigated the scope of this asymmetric conjugate addition using α -heterosubstituted aldehydes and vinyl sulfone as shown in Table 2. As for the α -amino-substituted aldehydes **5a**-e possessing the different substituent pattern of aromatic groups, m- and p-electron-donating substituents, as well as the fused ring and the electron-withdrawing group, were all tolerated, providing the corresponding conjugated adducts 6a - e with uniformly high selectivity (entries 1-5). In the case of α -amino-substituted aliphatic aldehydes **5f**-**g** having secand tert-alkyl groups, the reaction provided the conjugated adducts 6f-g consistently with 94% ee (entries 6 and 7). Whereas the reaction with benzyl-substituted aldehyde 5h resulted in moderately high enantioselectivity (entry 8), use of methyl-substituted analogue 5i furnished the conjugate adduct 6i with 81% ee (entry 9). In general, the conjugate addition of α -amino- α -alkyl-substituted aldehydes 5f-i proceeded slowly at -20 °C and required room temperature (entries 6-9).8 Other substituted aldehydes such as α -oxy and α -methyl aldehydes **5j**-**k**^{7b} were also employable with high enantioselectivities (entries 10-12).

Table 2. Asymmetric Conjugate Addition of Heterosubstituted Aldehydes Catalyzed by (S,S)-**2**^{*a*}

сно І		SO ₂ Ph (<i>S,S</i>)- 2 (10 mol%)		CHO SO₂Ph I∗ I		
_R ∕∕_x [·]	SO ₂ Ph additi	ve	R	`SO ₂ Ph		
5a-k	toluene		^ 6a-k			
		time	%	%		
entry	substrate 5 (R,X)	(h)	yield ^b	eec		
1^d	5a (Ph, NHBoc)	12	98	95		
2	5b (<i>m</i> -MeO-C ₆ H ₄ ,	10	98	95		
	NHBoc)					
3	5c (<i>p</i> -MeO-C ₆ H ₄ ,	10	98	94		
	NHBoc)					
4	5d (<i>p</i> -Cl- C_6H_4 ,	25	90	94		
	NHBoc)					
5^e	5e (α -Np, NHBoc)	24	99	91		
6	5f $(t$ -Bu, NHBoc)	48	94	94		
7	5g (<i>i</i> -Pr, NHBoc)	7	95	94		
8	5h (PhCH ₂ , NHBoc)	5	90	86		
9	5i (Me, NHBoc)	3	99	81		
10^{d}	5j (Ph, OMe)	36	99	92		
$11^{d,f}$	5j (Ph, OMe)	16	93	93		
12^{d}	5k (Ph, Me)	24	96	93		

^{*a*} Unless otherwise specified, asymmetric conjugate addition of heterosubstituted aldehydes and 1,1-bis(benzenesulfonyl)ethylene in the presence of 10 mol % of catalyst (*S*,*S*)-2 and 10 mol % of 2,6-dihydroxybenzoic acid in toluene at room temperature under the given conditions. ^{*b*} Isolated yield. ^{*c*} Enantiopurity of conjugate adducts was determined by HPLC analysis using a chiral column with hexane—isopropyl alcohol as solvent (see Supporting Information). ^{*d*} At -20 °C. ^{*e*} At 0 °C. ^{*f*} Use of 2,6-dinitrobenzoic acid.

In addition to 1,1-bis(benzenesulfonyl)ethylene, α -benzenesulfonylvinylphosphate 7 can be also utilized as a conjugate acceptor in the asymmetric conjugate addition of α -substituted aldehyde **5k** to furnish the desired adduct **8** with high diastereo- and enantiose-lectivities.

The absolute stereochemistry of the conjugate adduct 6a was unambiguously determined to be S by conversion to the known (S)-2-amino-2-phenyl-1-butanol as shown in the Supporting Information.⁹ Based on the absolute configuration of (S)-**6a**, a possible transition state model has been proposed as shown in Figure 1 to account for the observed absolute configuration of conjugate adduct 6a. In the generation of Z-enamine derived from N-Boc α -aminophenylacetaldehyde **5a** and the catalyst (S,S)-2 under the experimental conditions, the Z-enamine 9 would be stabilized by the hydrogen bonding between the ammonium hydrogen and N-Boc group. Here, ArCO₂⁻ as an additive would effectively shield the backside of 9. Then, 1,1-bis(benzenesulfonyl)ethylene might approach from the upper side via additional hydrogen bonding of a sulfonyl group with the Tf-amide hydrogen, leading to conjugate adduct 6a with the observed S configuration.

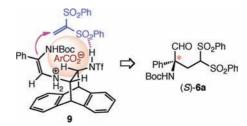


Figure 1. A possible transition state structure.

In summary, we have succeeded in the asymmetric conjugate addition of heterosubstituted aldehydes such as α -amido and α -alkoxy aldehydes under the influence of structurally unique organocatalyst **2**. This strategy is, in principle, applicable to other catalytic systems, and further effort to this end is currently underway in our laboratory.

Acknowledgment. The work was supported by a Grant-in-Aid for Specially Promoted Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Supporting Information Available: Experimental details and characterization data for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Recent reviews on asymmetric aminocatalysis: (a) List, B. Angew. Chem., Int. Ed 2010, 49, 1730. (b) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178. (c) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138. (d) List, B. Chem. Commun. 2006, 819. (e) List, B. Synlett 2001, 11, 1675.
- (2) Reviews on asymmetric aminocatalysis by primary amino acids: (a) Xu, L.-W.; Luo, J.; Lu, Y. Chem. Commun. 2009, 14, 1807. (b) Chen, Y.-C. Synlett 2008, 13, 1919. (c) Peng, F.; Shao, Z. J. Mol. Catal. A 2008, 285, 1.
- (3) Bennani, Y. L.; Hanessian, S. Chem. Rev. 1997, 97, 3161. See also: (a) Uehara, H.; Barbas, C. F., III. Angew. Chem., Int. Ed. 2009, 48, 9848. (b) Zhang, X.-J.; Liu, S.-P.; Li, X.-M.; Yan, M.; Chan, A. S. C. Chem. Commun. 2009, 833. (c) Luo, S.; Xu, H.; Chen, L.; Cheng, J.-P. Org. Lett. 2008, 10, 1775. (d) Huang, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2006, 128, 7170. (e) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 8664.
- (4) Recent reviews on α,α-dialkylated amino acids: (a) Tanaka, M. Chem. Pharm. Bull. 2007, 55, 349. (b) Vogt, H.; Braese, S. Org. Biomol. Chem. 2007, 5, 406. (c) Ohfune, Y.; Shinada, T. Eur. J. Org. Chem. 2005, 24, 5127. (d) Ohfune, Y.; Shinada, T. Bull. Chem. Soc. Jpn. 2003, 76, 1115.

COMMUNICATIONS

Previous examples of chiral α, α -dialkylamino aldehyde synthesis: (a) Baumann, T.; Baechle, M.; Hartmann, C.; Braese, S. *Eur. J. Org. Chem.* **2008**, *13*, 2207. (b) Baumann, T.; Vogt, H.; Braese, S. *Eur. J. Org. Chem.* **2007**, 2, 266. (c) Kim, S.-G.; Park, T.-H. *Tetrahedron Lett.* **2006**, *47*, 9067. (d) Guo, H.-M.; Cheng, L.; Cun, L.-F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-*Z. Chem. Commun.* **2006**, 429. (e) Suri, J. T.; Steiner, D. D.; Barbas, C. F., III. *Org. Lett.* **2005**, 7, 3885. (f) Chowdari, N. S.; Barbas, C. F., III. *Org. Lett.* **2005**, 7, 867. (g) Vogt, H.; Vanderheiden, S.; Braese, S. *Chem. Commun.* **2003**, 2448. (h) Wenglowsky, S.; Hegedus, L. S. *J. Am. Chem. Soc.* **1998**, *120*, 12468. (i) Jung, M. E.; D'Amico, D. C. *J. Am. Chem. Soc.* **1995**, *117*, 7379.

- (5) For preparation of (S,S)-3, see: (a) Fox, M. E.; Gerlach, A.; Lennon, I. C.; Meek, G.; Praquin, C. Synthesis 2005, 19, 3196. (b) Allenmark, S.; Skogsberg, U.; Thunberg, L. Tetrahedron: Asymmetry 2000, 11, 3527.
- (6) Preparation of α-amino-substituted aldehydes 5a-i: (a) Alfaro, R.; Yuste, F.; Ortiz, B.; Sanchez-Obregon, R.; Garcia Ruano, J. L. *Tetrahedron* 2009, 65, 357. (b) Dondoni, A.; Perrone, D.; Semola, T. *Synthesis* 1995, 2, 181. α-Methoxyphenylacetaldehyde 5f: (c) Trost, B. M.; Ball, Z. T.; Laemmerhold, K. M. J. Am. Chem. Soc. 2005, 127, 1002.
- (7) Use of 1,1-bis(benzenesulfonyl)ethylene for the generation of quaternary carbon centers: (a) Alba, A.-N. R.; Companyo, X.; Valero, G.; Moyano, A.; Rios, R. Chem. -Eur. J. 2010, 16, 5354. (b) Zhu, Q.; Lu, Y. Chem. Commun. 2010, 2235. (c) Liu, T.-Y.; Long, J.; Li, B.-J.; Jiang, L.; Li, R.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem 2006, 4, 2097. For other examples of Michael addition of aldehydes to vinyl sulfones, see: (d) Quintard, A.; Belot, S.; Marchal, E.; Alexakis, A. Eur. J. Org. Chem. 2010, 5, 927. (e) Quintard, A.; Alexakis, A. Chem.-Eur. J. 2009, 15, 11109. (f) Sulzer-Mosse, S.; Alexakis, A.; Mareda, J.; Bollot, G.; Bernardinelli, G.; Filinchuk, Y. Chem.-Eur. J. 2009, 15, 3204. (g) Landa, A.; Maestro, M.; Masdeu, C.; Puente, A.; Vera, S.; Oiarbide, M.; Palomo, C. Chem.-Eur. J. 2009, 15, 1562. (h) Zhu, Q.; Lu, Y. Org. Lett. 2008, 10, 4803. (i) Mosse, S.; Alexakis, A. Org. Lett. 2005, 7, 4361.
- (8) Asymmetric conjugate addition of 5i at -20 °C for 72 h gave 6i in 98% yield with 80% ee.
- (9) Leuser, H.; Perrone, S.; Liron, F.; Kneisel, F. F.; Knochel, P. Angew. Chem., Int. Ed. 2005, 44, 4627.

JA107897T